Copied to
clipboard

G = C10×C22.D4order 320 = 26·5

Direct product of C10 and C22.D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C22.D4, (C23×C20)⋊7C2, (C23×C4)⋊4C10, C23.49(C5×D4), C24.32(C2×C10), C22.61(D4×C10), (C2×C20).657C23, (C2×C10).344C24, (C22×C20)⋊59C22, (C22×D4).10C10, (C22×C10).171D4, C10.183(C22×D4), C23.5(C22×C10), (D4×C10).316C22, C22.18(C23×C10), (C23×C10).92C22, (C22×C10).259C23, C2.7(D4×C2×C10), (C2×C4⋊C4)⋊16C10, (C10×C4⋊C4)⋊43C2, C4⋊C411(C2×C10), (D4×C2×C10).23C2, C2.7(C10×C4○D4), (C5×C4⋊C4)⋊67C22, (C10×C22⋊C4)⋊30C2, (C2×C22⋊C4)⋊10C10, C22⋊C412(C2×C10), (C22×C4)⋊17(C2×C10), (C2×D4).61(C2×C10), C10.226(C2×C4○D4), (C2×C10).415(C2×D4), C22.31(C5×C4○D4), (C5×C22⋊C4)⋊66C22, (C2×C4).13(C22×C10), (C2×C10).231(C4○D4), SmallGroup(320,1526)

Series: Derived Chief Lower central Upper central

C1C22 — C10×C22.D4
C1C2C22C2×C10C22×C10D4×C10C5×C22.D4 — C10×C22.D4
C1C22 — C10×C22.D4
C1C22×C10 — C10×C22.D4

Generators and relations for C10×C22.D4
 G = < a,b,c,d,e | a10=b2=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, cd=dc, ce=ec, ede=cd-1 >

Subgroups: 530 in 342 conjugacy classes, 178 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C23×C4, C22×D4, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C22.D4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, C22×C20, D4×C10, D4×C10, C23×C10, C10×C22⋊C4, C10×C22⋊C4, C10×C4⋊C4, C5×C22.D4, C23×C20, D4×C2×C10, C10×C22.D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C24, C2×C10, C22.D4, C22×D4, C2×C4○D4, C5×D4, C22×C10, C2×C22.D4, D4×C10, C5×C4○D4, C23×C10, C5×C22.D4, D4×C2×C10, C10×C4○D4, C10×C22.D4

Smallest permutation representation of C10×C22.D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 131)(2 132)(3 133)(4 134)(5 135)(6 136)(7 137)(8 138)(9 139)(10 140)(11 82)(12 83)(13 84)(14 85)(15 86)(16 87)(17 88)(18 89)(19 90)(20 81)(21 78)(22 79)(23 80)(24 71)(25 72)(26 73)(27 74)(28 75)(29 76)(30 77)(31 97)(32 98)(33 99)(34 100)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 150)(42 141)(43 142)(44 143)(45 144)(46 145)(47 146)(48 147)(49 148)(50 149)(51 128)(52 129)(53 130)(54 121)(55 122)(56 123)(57 124)(58 125)(59 126)(60 127)(61 118)(62 119)(63 120)(64 111)(65 112)(66 113)(67 114)(68 115)(69 116)(70 117)(101 158)(102 159)(103 160)(104 151)(105 152)(106 153)(107 154)(108 155)(109 156)(110 157)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 51)(7 52)(8 53)(9 54)(10 55)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 31)(19 32)(20 33)(21 153)(22 154)(23 155)(24 156)(25 157)(26 158)(27 159)(28 160)(29 151)(30 152)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 61)(48 62)(49 63)(50 64)(71 109)(72 110)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 99)(82 100)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)(111 149)(112 150)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 139)(122 140)(123 131)(124 132)(125 133)(126 134)(127 135)(128 136)(129 137)(130 138)
(1 96 62 74)(2 97 63 75)(3 98 64 76)(4 99 65 77)(5 100 66 78)(6 91 67 79)(7 92 68 80)(8 93 69 71)(9 94 70 72)(10 95 61 73)(11 113 153 135)(12 114 154 136)(13 115 155 137)(14 116 156 138)(15 117 157 139)(16 118 158 140)(17 119 159 131)(18 120 160 132)(19 111 151 133)(20 112 152 134)(21 127 34 141)(22 128 35 142)(23 129 36 143)(24 130 37 144)(25 121 38 145)(26 122 39 146)(27 123 40 147)(28 124 31 148)(29 125 32 149)(30 126 33 150)(41 105 59 81)(42 106 60 82)(43 107 51 83)(44 108 52 84)(45 109 53 85)(46 110 54 86)(47 101 55 87)(48 102 56 88)(49 103 57 89)(50 104 58 90)
(1 67)(2 68)(3 69)(4 70)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 54)(42 55)(43 56)(44 57)(45 58)(46 59)(47 60)(48 51)(49 52)(50 53)(71 104)(72 105)(73 106)(74 107)(75 108)(76 109)(77 110)(78 101)(79 102)(80 103)(81 94)(82 95)(83 96)(84 97)(85 98)(86 99)(87 100)(88 91)(89 92)(90 93)(111 130)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)(118 127)(119 128)(120 129)(131 142)(132 143)(133 144)(134 145)(135 146)(136 147)(137 148)(138 149)(139 150)(140 141)(151 156)(152 157)(153 158)(154 159)(155 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,81)(21,78)(22,79)(23,80)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,97)(32,98)(33,99)(34,100)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,150)(42,141)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,128)(52,129)(53,130)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,118)(62,119)(63,120)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(101,158)(102,159)(103,160)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,31)(19,32)(20,33)(21,153)(22,154)(23,155)(24,156)(25,157)(26,158)(27,159)(28,160)(29,151)(30,152)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,61)(48,62)(49,63)(50,64)(71,109)(72,110)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,99)(82,100)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138), (1,96,62,74)(2,97,63,75)(3,98,64,76)(4,99,65,77)(5,100,66,78)(6,91,67,79)(7,92,68,80)(8,93,69,71)(9,94,70,72)(10,95,61,73)(11,113,153,135)(12,114,154,136)(13,115,155,137)(14,116,156,138)(15,117,157,139)(16,118,158,140)(17,119,159,131)(18,120,160,132)(19,111,151,133)(20,112,152,134)(21,127,34,141)(22,128,35,142)(23,129,36,143)(24,130,37,144)(25,121,38,145)(26,122,39,146)(27,123,40,147)(28,124,31,148)(29,125,32,149)(30,126,33,150)(41,105,59,81)(42,106,60,82)(43,107,51,83)(44,108,52,84)(45,109,53,85)(46,110,54,86)(47,101,55,87)(48,102,56,88)(49,103,57,89)(50,104,58,90), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,51)(49,52)(50,53)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,101)(79,102)(80,103)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,91)(89,92)(90,93)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141)(151,156)(152,157)(153,158)(154,159)(155,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,81)(21,78)(22,79)(23,80)(24,71)(25,72)(26,73)(27,74)(28,75)(29,76)(30,77)(31,97)(32,98)(33,99)(34,100)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,150)(42,141)(43,142)(44,143)(45,144)(46,145)(47,146)(48,147)(49,148)(50,149)(51,128)(52,129)(53,130)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,118)(62,119)(63,120)(64,111)(65,112)(66,113)(67,114)(68,115)(69,116)(70,117)(101,158)(102,159)(103,160)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,31)(19,32)(20,33)(21,153)(22,154)(23,155)(24,156)(25,157)(26,158)(27,159)(28,160)(29,151)(30,152)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,61)(48,62)(49,63)(50,64)(71,109)(72,110)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,99)(82,100)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(111,149)(112,150)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,139)(122,140)(123,131)(124,132)(125,133)(126,134)(127,135)(128,136)(129,137)(130,138), (1,96,62,74)(2,97,63,75)(3,98,64,76)(4,99,65,77)(5,100,66,78)(6,91,67,79)(7,92,68,80)(8,93,69,71)(9,94,70,72)(10,95,61,73)(11,113,153,135)(12,114,154,136)(13,115,155,137)(14,116,156,138)(15,117,157,139)(16,118,158,140)(17,119,159,131)(18,120,160,132)(19,111,151,133)(20,112,152,134)(21,127,34,141)(22,128,35,142)(23,129,36,143)(24,130,37,144)(25,121,38,145)(26,122,39,146)(27,123,40,147)(28,124,31,148)(29,125,32,149)(30,126,33,150)(41,105,59,81)(42,106,60,82)(43,107,51,83)(44,108,52,84)(45,109,53,85)(46,110,54,86)(47,101,55,87)(48,102,56,88)(49,103,57,89)(50,104,58,90), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,54)(42,55)(43,56)(44,57)(45,58)(46,59)(47,60)(48,51)(49,52)(50,53)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,101)(79,102)(80,103)(81,94)(82,95)(83,96)(84,97)(85,98)(86,99)(87,100)(88,91)(89,92)(90,93)(111,130)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)(131,142)(132,143)(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,141)(151,156)(152,157)(153,158)(154,159)(155,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,131),(2,132),(3,133),(4,134),(5,135),(6,136),(7,137),(8,138),(9,139),(10,140),(11,82),(12,83),(13,84),(14,85),(15,86),(16,87),(17,88),(18,89),(19,90),(20,81),(21,78),(22,79),(23,80),(24,71),(25,72),(26,73),(27,74),(28,75),(29,76),(30,77),(31,97),(32,98),(33,99),(34,100),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,150),(42,141),(43,142),(44,143),(45,144),(46,145),(47,146),(48,147),(49,148),(50,149),(51,128),(52,129),(53,130),(54,121),(55,122),(56,123),(57,124),(58,125),(59,126),(60,127),(61,118),(62,119),(63,120),(64,111),(65,112),(66,113),(67,114),(68,115),(69,116),(70,117),(101,158),(102,159),(103,160),(104,151),(105,152),(106,153),(107,154),(108,155),(109,156),(110,157)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,51),(7,52),(8,53),(9,54),(10,55),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,31),(19,32),(20,33),(21,153),(22,154),(23,155),(24,156),(25,157),(26,158),(27,159),(28,160),(29,151),(30,152),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,61),(48,62),(49,63),(50,64),(71,109),(72,110),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,99),(82,100),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98),(111,149),(112,150),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,139),(122,140),(123,131),(124,132),(125,133),(126,134),(127,135),(128,136),(129,137),(130,138)], [(1,96,62,74),(2,97,63,75),(3,98,64,76),(4,99,65,77),(5,100,66,78),(6,91,67,79),(7,92,68,80),(8,93,69,71),(9,94,70,72),(10,95,61,73),(11,113,153,135),(12,114,154,136),(13,115,155,137),(14,116,156,138),(15,117,157,139),(16,118,158,140),(17,119,159,131),(18,120,160,132),(19,111,151,133),(20,112,152,134),(21,127,34,141),(22,128,35,142),(23,129,36,143),(24,130,37,144),(25,121,38,145),(26,122,39,146),(27,123,40,147),(28,124,31,148),(29,125,32,149),(30,126,33,150),(41,105,59,81),(42,106,60,82),(43,107,51,83),(44,108,52,84),(45,109,53,85),(46,110,54,86),(47,101,55,87),(48,102,56,88),(49,103,57,89),(50,104,58,90)], [(1,67),(2,68),(3,69),(4,70),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,54),(42,55),(43,56),(44,57),(45,58),(46,59),(47,60),(48,51),(49,52),(50,53),(71,104),(72,105),(73,106),(74,107),(75,108),(76,109),(77,110),(78,101),(79,102),(80,103),(81,94),(82,95),(83,96),(84,97),(85,98),(86,99),(87,100),(88,91),(89,92),(90,93),(111,130),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126),(118,127),(119,128),(120,129),(131,142),(132,143),(133,144),(134,145),(135,146),(136,147),(137,148),(138,149),(139,150),(140,141),(151,156),(152,157),(153,158),(154,159),(155,160)]])

140 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A···4H4I···4N5A5B5C5D10A···10AB10AC···10AR10AS···10AZ20A···20AF20AG···20BD
order12···22222224···44···4555510···1010···1010···1020···2020···20
size11···12222442···24···411111···12···24···42···24···4

140 irreducible representations

dim1111111111112222
type+++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4C4○D4C5×D4C5×C4○D4
kernelC10×C22.D4C10×C22⋊C4C10×C4⋊C4C5×C22.D4C23×C20D4×C2×C10C2×C22.D4C2×C22⋊C4C2×C4⋊C4C22.D4C23×C4C22×D4C22×C10C2×C10C23C22
# reps13281141283244481632

Matrix representation of C10×C22.D4 in GL5(𝔽41)

400000
01000
00100
00040
00004
,
400000
00900
032000
00010
00001
,
10000
040000
004000
00010
00001
,
10000
004000
040000
000040
00010
,
10000
01000
004000
00010
000040

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[40,0,0,0,0,0,0,32,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,40,0],[1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40] >;

C10×C22.D4 in GAP, Magma, Sage, TeX

C_{10}\times C_2^2.D_4
% in TeX

G:=Group("C10xC2^2.D4");
// GroupNames label

G:=SmallGroup(320,1526);
// by ID

G=gap.SmallGroup(320,1526);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,436]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^2=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e=c*d^-1>;
// generators/relations

׿
×
𝔽